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Abstract— In this paper an integral eqaation formulation of free vibration of moderately thick
laminated orthotropic shallow shells has been established by using the method of weighted residuals
and taking the static fundamental solution as the weighted function. In the present formulation
there are not only boundary unknowns but also domain unknowns. The integral equations presented
are reduced to a standard algebraic eigenvalue problem by means of the boundary-domain element.
In the numerical implementation. tw o kinds of different matrix formulation are presented by using
two kinds of different domain elements. Some numerical results are presented and compared with
the exact solutions in order to demonstrete the correctness and the accuracy of the present method.

I. INTRODUCTION

During the last few decades. boundary integral equation methods have been widely applied
in the analysis of structure engineering. Much rescarch work has been done on free vibration
of plates and shells. There are basically two approaches for treating free vibration of plates
and shells by using boundary integral equation methods. The first approach is that the
fundamental solutions which are dependent on frequency are taken as the weighted func-
tion. This approach reduces a non-algebraic eigenvalue problem, that is to say, the matrix
solving eigenvalue is dependent on frequency (Vivoli and Filippi. 1974 ; Niwa et al., 1981 ;
Kitahara, 1985: Wong and Hutchinson, 1981). The second approach is that the static
fundamental solutions are taken as the weighted function. This approach reduces not only
boundary unknowns but domain unknowns in the resulting integral equation. This integral
equation is solved by boundary-domain element methods. The great advantage of this
approach is that it yields a standard algebraic eigenvalue problem. This method was applied
to thin plate vibration (Bezine. 1980 : Costa. 1988 : Providakis and Beskos. 1989). It was
also applied to Hoff's sandwich plate vibration (Wang and Huang, 1992a) and orthotropic
thick plate vibration (Wang and Huang. 1992b). Boundary-domain element methods were
also applied to the static analysis of shells (Ye. 1991) : however. to the authors’ knowledge,
boundary-domain element methods have not been used in free vibration of moderately
thick laminated orthotropic shallow shells.

In this paper the static fundamental solution is taken as the weighted function. An
integral formulation for free vibration of moderately thick laminated orthotropic shallow
shells has been established. In the present formulation, there are not only boundary
unknowns but also domain unknowns. The integral equation formulation presented is
reduced to a standard algebraic eigenvalue problem by the boundary-domain element.
Some examples are analysed with the present method and compared with the exact solution.
Numerical results show that the method presented in this paper has a good accuracy and a
high efficiency.
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2. INTEGRAL EQUATION FORMULATION

In this paper we shall only consider orthotropic and symmetric cross-ply laminated
shallow shells. Herein, the plane of x, and x. is assumed to coincide with the midsurface
of the shallow shells with constant thickness 4. The principal axes of orthotropy are assumed
to coincide with x, and x.. U, represents the displacements of the shallow shells in the
directions of x,. x5 and x.. and the rotations in the directions of x, and x,, i.e. U, indicates
u, r.w.ty, and . According to the simplified theory of shallow shells, the basic equations
of free vibration of shallow shells including transverse shear deformation can be expressed
in the following form (Wang, 1991):

AU+ m, U, =0 (i.j=1,2,3.4,3). (D

where « is the circular frequency of the shells. A¥ are differential operators and m;; is a
diagonal matrix. which can be expressed as follows:
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where &k, and k, are two principal curvatures of shallow shells. the expression @, can be
found in Wang (1991) and Vinson and Chou (1975). h, is the vertical distance from the
midplane, = = 0, to the upper surface of the kth lamina. p*’ is the density of the kth lamina
and K, and K, are the shear correction factors (Wang. 1991 Vinson and Chou, 1975).

By using the method of weighted residuals, eqn (1) can be expressed in the following
form:
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-j ARUF 4+ Uk Uy dQ = | U2P,dT - ' PIUAT (i j=1.2,3.45. (3
Q JI Vi
In the above equation. if we take

FUF+ 0 Uy, = —0,0(0.x) (1 j = 1.2.3.4.5), 4)

in which d({. x) is the Dirac delta function. then the fundamental solution U¥({, x) obtained
by using eqn (4) is dependent on frequency. In this paper the static fundamental solution
of the problem is taken as the weighted function. i.e. we take

ARUNCX) = 0,00 x) (1. j=1.2.3,4.5). (3)

Substituting eqn (5) into eqn (3). we have
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~

+m3J PUXC XU (X +pUEC X)L (x)+pURC x)Us (x)
Q
FJURXIC X)) +JUR ) U5(x))dQ (1 j=1.2,3.4,5), (6)

where UK, x) and PX(..x) are the static fundamental solutions of the generalized dis-
placements and the generalized boundary forces of moderately thick laminated orthotropic
shallow shells (Wang and Huang, 1994 ; Wang and Schweizerhof, 1995). { and x represent
the coordinates of the source point and a field point. respectively. C;({) depends on the
position of {. If (e Q. then €, = 6, :1f [ is on the smooth boundary, then C;, = 6,/2; and if
{ is on the non-smooth boundary, C, depends on the geometry of the boundary. In general,
if { is on the non-smooth boundary, 1t 1s difficult to obtain () analytically, but C;({) can
be obtained by the indirect method (Vander Weeén, 1982) from the point of view of
numerical calculation. On the other hund. as J is artificially selected, the corner point can
be avoided.

3. MATRIX FORMULATION

In general. it is difficult to obtain the analytical solution of integral eqn (6). Thus, eqn
(6) is solved by using a numerical method. As there are not only boundary unknowns but
also domain unknowns in eqn (6), the boundary T" and the domain  are both discretized
into a number of boundary and domain elements. A matrix formulation of the algebraic
eigenvalue for free vibration of moderately thick laminated orthotropic shallow shells will
be established. In the procedure of numerical implementation. the boundary is discretized
into N, boundary elements with N, nodes. The generalized boundary displacements and
the generalized boundary forces are nterpolated in terms of their nodal values on every
boundary element. Boundary elements can be constant or higher order elements. The
domain is discretized into M domain elements. When a different interpolation function is
employed in every domain element, a different matrix formulation is obtained. When the
generalized displacements are taken as constant in every domain element, the third term
on the right-hand side of eqn (6) is only related to the generalized displacements of domain
nodes. When a higher order interpolation function is employed in every domain element,
the third term on the right-hand side of eqn (6) is related not only to the generalized
displacements of domain nodes but also to the generalized displacement of boundary nodes.
In what follows, we shall consider the two cases in which constant elements and higher
order elements are used in the domain.
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3.1. Using constant elements in the domain

As there are not only boundary unknowns but also domain unknowns in eqn (6), the
boundary and the domain of the shell are divided into a number of boundary and domain
elements. The generalized displacements of the shell are taken as constant in every domain
clement. Boundary elements can be constant or higher order elements. We shall establish
integral eqn (6) on every boundary node and at the centre of every domain element.

(a) When (el i.e. the source point { is situated at every boundary node, by using eqn
(6) successively on all the nodal points of the boundary and considering the boundary
conditions. we have

(A ] X — “):[Brsz] {UQ} =0. (7N

where [Ap] and [Byg) are the coefficient matrices, {X} are the nodal unknowns of the
generalized tractions and the generalized displacements on the boundary and {U,,} are the
unknowns of the generalized displacements at the centre of every domain element.

(b) When (e Q. 1.e. the source point ( is situated at the centre of every domain element,
by using eqn (6) once again on all the domain elements and considering the boundary
conditions, we have

tUa) +[Am ]1X] = 0 [Baol U}, (8)

in which [Ag, ] and [Bgg] are the coefficient matrices. (X} can be obtained by using eqn (7).
which is

1X} = (’)J[Al'l‘] ][Brsz] {Usz}‘- &)

Substituting the above expression into eqn (8). we obtain the following standard matrix
formulation of the algebraic eigenvalue problem :

, oo
([MP f:m)-{ug} - 0. (10)
-

in which [1] is a unit matrix and

[Nl] = [BszszJ - [Am‘][Arr] I[Bl‘sz]- (1 1)

3.2. Using higher order elements in the domain

In this discretization scheme. higher order elements, which may be linear elements,
quadratic elements or cubic elements, are employed in the domain. Boundary elements can
be constant or higher elements. As there are not only boundary unknowns but also domain
unknowns in eqn (6). we shall establish integral equation (6) at every boundary node and
on every domain node.

(a) When (el i.e. the source point { is situated at every boundary node, by using eqn
(6) successively on all the boundary nodes and considering the boundary conditions, we
have

LR I
[Aver: Aral l X | — " [Brg] {L. } =0. (12)

in which [Apq]. [Apa] and [Brg] are the coefficient matrices. (U} and {Ug} are the
nodal unknowns of the generalized displacements on the boundary and in the domain,
respectively. | X} represents the nodal unknowns of the generalized tractions on the bound-
ary.
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(b) When Je Q. 1.c. the source point { is situated at every node of the domain, by using
egn (6) successively to all the domain nodes and considering the boundary conditions. we
have

L
oy, (13)
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in which [Agp]. [Aqiz] and [Bege) are the coetficient matrices.
Equations (12) and (13) can be expressed in the following form :
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Using eqn (14). we obtain
‘ _ [ Uy )
X = A A o (A lBlsz]*{l,l ([ (16)
A

Substituting eqn (16) into egn (15). we obtain the following matrix formulation of standard
algebraic eigenvalue problem :

l,[KI):l‘I = 0. (17)
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where [M] and [K] are known. Equations (10) and (17) desceribe an algebraic cigenvalue
problem of a4 non-symmetric matrix. The natural frequencies and mode shapes can be
obtained from the eigenvalues and cigenvectors provided by the solution of eqns (10) or

(17).

4. NUMERICAL RESULTS

In this section some numerical results are given to verify the correctness of the for-
mulation and the accuracy of the solution which arce presented in this paper. R, and R, are
two principal radii of the shell along the v- and v-axes. respectively. « and b are the lengths
of the shell along the v- and y-axes. respectivelv. Vibrational mode shapes are usually
described in the form s, n. where m and » are the numbers of half waves in the x and »
directions, respectively. The entire boundary of the shell is divided equally into 32 boundary
elements and a linear interpolation tunction 1s emploved on every boundary element. The
domain is divided equally into two kinds of 4 x4 (16 domain elements) and 8 x & meshes
(64 domain elements). The generalized displacements of the shell are taken as constant on
every domain element. i.e. constant clements are used in the domain of the shell. The exact

SAS 33-1-8
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Table 1. Frequency parameters [ = wa™ (p E;) #] of SSSS moderately thick laminated orthotropic square
spherical shallow shell for the case of 0°/90 90 .0

Wave number (m. n)

Ra Ihu Method 1.1 1.2 2.1 2.2 1.3
3001 44 48.82257 65.17546 81.77706 §2.91255 93.63143
8= X 4795226 62.66462 78.29612 77.97635 90.59067
Reddy (1984 4741525 60.97662 76.26018 75.13405 8§6.46918
0.1 4.4 13.31602 24.27564 3171891 38.44838 41.75744
8= N 13.05551 23.20745 30.39797 36.29395 39.79291
Reddy ( 1984) 12.79278 22.63980 29.72045 3517592 38.31140
S0 4 x4 3206317 46.06915 67.41534 7299397 74.45932
¥xx 3146153 44.09002 04.44392 68.43393 70.80062
Reddy (1984) 31.07907 42.92415 62.92941 65.99475 67.79810
0.1 4x4 12.86442 23.89799 31.47222 38.29668 41.42246
8 N 12.6130% 22.84572 30.16340 36.15446 39.46570
Reddy (1984) 1243619 22.36235 29.56296 3510534 38.07252
10 001 44 21.05866 34.69995 60.18495 68.27831 64.18169
88 20.65688 33.12916 57.49284 63.92740 60.40510
Reddy 11984) 20.38024 32.30546 56.30135 61.71514 58.08370
0.1 454 12.66091 23.73201 31.36421 38.22723 41.27410
8N 1241384 22.68744 30.06171 36.09381 39.32355
Reddy (1984) 12.28005 2224316 29.49562 3507542 37.97058

solution of the simply supported shell is calculated by using the formulation [eqn (27)]
presented by Reddy (1984) and not taken directly from the paper of Reddy (1984). Except
where indicated to the contrary. the values of the shear correction factors are
Ki=K:=36.

Example |
A simply supported (SSSS) spherical shallow shell is considered. The shell is a four-

layer symmetric orthotropic cross-ply laminate. i.e. 0 /90 /90 /0 . The material properties
for all piles are identical. The following geometric and material parameters are used :

abh=1 R =R =R
E, = 25E, G, =02E,
G, =0, =05FE v,=025

Table | shows a comparison between the present method and the exact solution (Reddy,
1984).

Example 2

A simply supported (SSSS) non-spherical shallow shell is considered. The material
parameters and laminate case of the shell are the same as in example [. The following two
kinds of geometric parameters are used :

casel auh=1 R, a=8 R.au=10
case2 ah=1 R a=8 R.a=1l6.

A comparison betweer the present solution and the exact solution (Reddy. 1984) is given
in Table 2.

Example 3

A square spherical shallow shell whose two opposite edges parallel to the y-axis are
simply supported and the other edges clamped is considered. This kind of boundary
condition is represented by SCSC. The shell is a five-layer orthotropic cross-ply laminate,
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Table 2. Frequency parameters [ = wa”\ (p, £>)h] of SSSS moderately thick laminated orthotropic square non-
spherical shallow shell for the case of 0 190 90 0

Wave number (m, #)

2 2.1 2;2 1.3

Ru ha Method 1.1 1.2
Roa=8 001 x4 2225957 36.62044 60.41892 68.70238 66.15901
R.oa=10 8 x K 21.83573 3498081 57.71851 64.32666 62.37116
Reddy (1984) 21.54605 34.07575 56.53498 62.10343 59.81966
0.1 4x4 12.67941 23.75739 31.36784 38.23435 41.29947
¥ x 8 12.43193 2271151 30.06471 36.09933 39.34791
Reddy (1984) 12.29182 22.26177 29.49453 35.07687 37.98934
R, =38 0.01 44 20.47368 35.8983% 59.00336 68.07171 65.84282
R.ya=16 &% 8 20.08482 34.28034 56.3569% 63.72138 62.05236
Reddy (1984) 1981710 33.38576 55.24961 61.52753 59.51194
0.1 44 12.65103 23.74758 31.34670 38.22346 41.29308
8 x 8 12.40417 2270223 30.04478 36.09073 39.34335
Reddy (1984) 12.26740 22.25491 29.47750 35.07048 37.98743

Table 3. Fundamental frequency parameters [@ = mu:\ (p F} h] of SCSC moderately thick laminated orthotropic
square spherical shallow shell for the case of 0 90 .0 90 0 . ha = 0.0]

R.a 10 20 30 40 50 60 Plate

4 x4 4295384 30.34981 27.60329 26.49045 23.93K17 25.66396 (Craig and Dawe.
1986)

8 x 8 42.04798 29 8333 26.99901 2590925 25 38R(09 25.10009 24.3717

Table 4. Frequency parameters @ = ea (p £)) h] of SCSC moderately thick laminated orthotropic square
spherical shallow shell for the casc of 0 90 -0 90 0

Wave number (m1. 1)

ha R u Mecthod 1.1 1.2 2 22 1.3

0.01 10 44 4295384 66.3331K T0.83711 90.23179 138.8637
X <X 42.04708 6225563 67.53970 82.94850 113.5904
20 14 3054951 63588027 63.74912 88.73326 135.9503
8§ x8 2988533 991588 60.71142 §1.52518 110.9735

Plate  (Craig and Dawe. 19%6) 243717 56.6809 57.1459 781717 107.072
0.1 10 43 18.28430 3513094 39.41846 50.97265 53.14729
XX 17.78768 3294524 36.9808K 46.36815 49.90220
20 1x4 18.13904 35.62283 40.02329 53.02312 53.88698
B ox X 17.54516 3293322 26.87080 46.79841 50.09028

Plate  (Craig and Dawce. 19%6) 17.6916 311819 36.3093 44.6448 48.0932

1.e. 0,90 ;0 90 0. whose material properties for all plies are identical. The material
properties and geometric parameters are as follows:

ab=1 R =R =R L E, = 30
G £, =06 G By =05 vy =025

where subscripts L and T reler to directions parallel to the fibres and transverse to the
fibres. respectively. The thickness of cach of the O plies is two-thirds that of each of the
90 plies, so that the total sum of the thicknesses of the O and 90 plies is the same. The
shear correction factors are K{ = 0.87323 and K3 = 0.59139. The data used in this example
are taken from Craig and Dawe (1986) and Wang and Dawe (1993). The numerical results
are given in Tables 3 and 4 in terms or' o frequency parameter .

We see from Tables 1 and 2 that the natural frequencies obtained by using the simplest
domain element (constant clement) in the present method are in excellent agreement with
the exact solution (Reddy. 1984). When the domain is divided into an 8 x 8 mesh, the
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maximum error of the natural frequencies is not greater than 5% of the exact solution
(Reddy, 1984). We sce from Tables 3 and 4 that the solution of the spherical shell gradually
tends to the solution o1 the plate with increasing curvature radius R of the shell. This is in
keeping with the actual situation.

5 CONCLUSIONS

In this paper an integral equation formulation for free vibration of moderately thick
laminated orthotropic shallow shells has been presented by using the static fundamental
solution as the weighted function. As there are not only boundary unknowns but also
domain unknowns in the present integral equation, the boundary and the domain are
discretized. The boundury-domain ¢lement method for free vibration of moderately thick
orthotropic laminated shallow shells is presented in which the resulting integral equations
presented are reduced 10 a standard matrix eigenvalue problem. In this paper, two kinds of
different matrix formulation are presented by using two kinds of different domain elements.
In the present method. the domain discretization scheme required to solve the problem
using the present method is much simpler than those necessary with the finite element
method. Using the present method a more accurate result can be obtained with a small
number of boundary and domain ¢lements. The present method can be used not only for
regular region and simple boundary conditions but also for irregular region and complex
boundary conditions. The numerical results show that the present method is an accurate
analysis technique with good convergence for the solution of the free vibration problem of
moderately thick laminated orthotropic shallow shells. The numerical calculation using
higher boundary elements and higher domain clements is under study for the problem.
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